sábado, 5 de febrero de 2011

EL MICROPROCESADOR

El microprocesador o CPU (Unidad Central de Procesamiento). Es el chip mas importante, pues es el que controla y coordina todas las operaciones del sistema, lleva a cabo el procesamiento de la informacion y realiza la decodificacion de las instrucciones. Se compone principalmente de transistores.


Un microprocesador esta compuesto de las siguientes partes y características:

  • Unidad de Control (UC), misma que está delegada a seguir cada una de las operaciones que realiza una instrucción.
  • Unidad Aritmética y Lógica, que es la responsable de recibir todas las operaciones asignadas y convertirlas en datos. Estas operaciones son del tipo matemático y son respaldadas por un co-procesador matemático o como muchos lo conocen por FPU.
  • El Registro, el cual es de suma importancia ya que sirve para detallar las instrucciones efectivas y fallidas. Podemos mencionar un sub-grupo en el que se encuentra el Registro contador (mismo que indica cual es la instrucción que sigue en el proceso), el Registro de Instrucción (que indica la instrucción que se encuentra ejecutándose en ese instante) el Registro Acumulador (que es donde se guarda los resultados intermedios) y el Registro de estado (que guarda distintos tipos de avisos).
  • La Memoria Caché, viene a ser un espacio reservado dentro del procesador, lugar donde se guardas procesos que son de uso regular y que tiene por finalidad ocuparlos y cargarlos rápidamente desde la memoria para la aplicación. Se puede hacer una comparativa con las neuronas que tenemos en nuestro cerebro, es decir, mientras menos neurona tengamos, menor será nuestra capacidad de retención de información. Así mismo actúa la memoria caché, que mientras más grande sea, mayor será su eficiencia en la información guardada.


Arquitectura

Dependiendo del numero de instrucciones que soporte la CPU distinguimos dos tipos de arquitecturas:

CISC: Complex Instructions Set Computer
RISC: Reduced Instruction Set Computer

Dependiendo de la forma de acceder a la memoria de datos y de instrucciones de programa se tiene:

Von Newman
Harvard

Marcas Y Generaciones

Primera Generacion:

8086 de Intel
Bus de datos de 16 bits y un bus de direcciones de 20 hilos
Velocidad de 4.7 MHz
Co procesador matematico 8087

Luego salio el micro 8088 con velocidades de hasta 12 MHz

Segunda Generacion:

Micro Procesador Intel 80286
Bus de datos de 16 bits y bus de direcciones de 24 hilos
La velocidad alcanzaba los 33 MHz
Co procesador matematico 80287

En esta generacion aparecen otros fabricantes como AMD y Harris

Tercera Generacion:

Micro Procesador Intel 80386DX
Bus de datos de 32 bits al igual que el bus de direcciones
Co procesador matematicos 80387

Existieron versiones mas baratas como la 386SX (16 bits de datos)
En esta generacion aparece la memoria cache externa
Y hasta esta generacion los micro se fabricaban con tecnologia CISC (Complex Instructions Set Computer)

Cuarta Generacion:

Intel 486
Bus de 32 x 32
Conjunto de instrucciones RISK (Reduced Instructions Set Computer)
Memoria Cache interna de 8 KB
Integracion del coprocesador matematico en el mismo chip

Aparece el Cooler

Quinta Generacion:

Intel Pentium
Bus de 64 x 64
Trabaja con dos 486 en paralelo
Competidores mas cercanos, K5 de AMD y el 5X86 de CIRIX

Sexta Generacion:

Al hablar de sexta generacion de micros, debemos tener en cuenta que hoy ya no existe un standard tan claro como en las generaciones anteriores donde la aparicion de cada modelo de  μP de Intel marcaba el comienzo de una nueva generacion. Hoy en dia cada fabricante trata de desarrollar su producto con criterios propios, tratando simplemente de superar en prestaciones al producto de la competencia, sin por ello llegar a realizar copias modificadas.

A continuacion veremos los microprocesadores mas reelevantes que se han creado hasta ahora para los diferentes tipos de ordenadores, ya sean de escritorio o portatile etc..,

1971: El Intel 4004

El 4004 fue el primer microprocesador del mundo, creado en un simple chip, y desarrollado por Intel. Era un CPU de 4 bits y también fue el primero disponible comercialmente. Este desarrollo impulsó la calculadora de Busicom y dio camino a la manera para dotar de "inteligencia" a objetos inanimados, así como la computadora personal.

1972: El Intel 8008

Codificado inicialmente como 1201, fue pedido a Intel por Computer Terminal Corporation para usarlo en su terminal programable Datapoint 2200, pero debido a que Intel terminó el proyecto tarde y a que no cumplía con las expectativas de Computer Terminal Corporation, finalmente no fue usado en el Datapoint. Posteriormente Computer Terminal Corporation e Intel acordaron que el i8008 pudiera ser vendido a otros clientes.

1974: El SC/MP

El SC/MP desarrollado por National Semiconductor, fue uno de los primeros microprocesadores, y estuvo disponible desde principio de 1974. El nombre SC/MP (popularmente conocido como "Scamp") es el acrónimo de Simple Cost-effective Micro Processor (Microprocesador simple y rentable). Presenta un bus de direcciones de16 bits y un bus de datos de 8 bits. Una característica avanzada para su tiempo, es la capacidad de liberar los buses, a fin de que puedan ser compartidos por varios procesadores. Este procesador fue muy utilizado, por su bajo costo, y provisto en kits, para los propósitos educativos, de investigación y para el desarrollo de controladores industriales de diversos propósitos.

1974: El Intel 8080

EL 8080 se convirtió en la CPU de la primera computadora personal, la Altair 8800 de MITS, según se alega, nombrada en base a un destino de la Nave Espacial "Starship" del programa de televisión Viaje a las Estrellas, y el IMSAI 8080, formando la base para las máquinas que ejecutaban el sistema operativo [[CP/M]|CP/M-80]. Los fanáticos de las computadoras podían comprar un equipo Altair por un precio (en aquel momento) de u$s395. En un periodo de pocos meses, se vendieron decenas de miles de estas PC.

1975: Motorola 6800

Se fabrica, por parte de Motorola, el Motorola MC6800, más conocido como 6800. Fue lanzado al mercado poco después del Intel 8080. Su nombre proviene de qué contenía aproximadamente 6800 transistores. Varios de los primeras microcomputadoras de los años 1970 usaron el 6800 como procesador. Entre ellas se encuentran la SWTPC 6800, que fue la primera en usarlo, y la muy conocida Altair 680. Este microprocesador se utilizó profusamente como parte de un kit para el desarrollo de sistemas controladores en la industria. Partiendo del 6800 se crearon varios procesadores derivados, siendo uno de los más potentes el Motorola

1976: El Z80

La compañía Zilog Inc. crea el Zilog Z80. Es un microprocesador de 8 bits construido en tecnología NMOS, y fue basado en el Intel 8080. Básicamente es una ampliación de éste, con lo que admite todas sus instrucciones. Un año después sale al mercado el primer computador que hace uso del Z80, el Tandy TRS-80 Model 1 provisto de un Z80 a 1,77 MHz y 4 KB de RAM. Es uno de los procesadores de más éxito del mercado, del cual se han producido numerosas versiones clónicas, y sigue siendo usado de forma extensiva en la actualidad en multitud de sistemas embebidos. La compañía Zilog fue fundada 1974 por Federico Faggin, quien fue diseñador jefe del microprocesador Intel 4004 y posteriormente del Intel 8080.

1978: Los Intel 8086 y 8088

Una venta realizada por Intel a la nueva división de computadoras personales de IBM, hizo que las PC de IBM dieran un gran golpe comercial con el nuevo producto con el 8088, el llamado IBM PC. El éxito del 8088 propulsó a Intel a la lista de las 500 mejores compañías, en la prestigiosa revista Fortune, y la misma nombró la empresa como uno de Los triunfos comerciales de los sesenta.

1982: El Intel 80286

El 80286, popularmente conocido como 286, fue el primer procesador de Intel que podría ejecutar todo el software escrito para su predecesor. Esta compatibilidad del software sigue siendo un sello de la familia de microprocesadores de Intel. Luego de 6 años de su introducción, había un estimado de 15 millones de PC basadas en el 286, instaladas alrededor del mundo.

1985: El Intel 80386

Este procesador Intel, popularmente llamado 386, se integró con 275000 transistores, más de 100 veces tantos como en el original 4004. El 386 añadió una arquitectura de 32 bits, con capacidad para multitarea y una unidad de traslación de páginas, lo que hizo mucho más sencillo implementar sistemas que usaran memoria virtual.

1985: El VAX 78032

El microprocesador VAX 78032 (también conocido como DC333), es de único chip y de 32 bits, y fue desarrollado y fabricado por Digital Equipment Corporation (DEC); instalado en los equipos MicroVAX II, en conjunto con su chip coprocesador de coma flotante separado, el 78132, tenían una potencia cercana al 90% de la que podía entregar el minicomputador VAX 11/780 que fuera presentado en 1977. Este microprocesador contenía 125000 transistores, fue fabricado en tecnología ZMOS de DEC. Los sistemas VAX y los basados en este procesador fueron los preferidos por la comunidad científica y de ingeniería durante la década del 1980.

1989: El Intel 80486

La generación 486 realmente significó contar con una computadora personal de prestaciones avanzadas, entre ellas, un conjunto de instrucciones optimizado, una unidad de coma flotante o FPU, una unidad de interfaz de bus mejorada y una memoria caché unificada, todo ello integrado en el propio chip del microprocesador. Estas mejoras hicieron que los i486 fueran el doble de rápidos que el par i386 - i387 operando a la misma frecuencia de reloj. El procesador Intel 486 fue el primero en ofrecer un coprocesador matemático o FPU integrado; con él que se aceleraron notablemente las operaciones de cálculo. Usando una unidad FPU las operaciones matemáticas más complejas son realizadas por el coprocesador de manera prácticamente independiente a la función del procesador principal.

1991: El AMD AMx86

Procesadores fabricados por AMD 100% compatible con los códigos de Intel de ese momento, llamados "clones" de Intel, llegaron incluso a superar la frecuencia de reloj de los procesadores de Intel y a precios significativamente menores. Aquí se incluyen las series Am286, Am386, Am486 y Am586.

1993: PowerPC 601

Es un procesador de tecnología RISC de 32 bits, en 50 y 66MHz. En su diseño utilizaron la interfaz de bus del Motorola 88110. En 1991IBM busca una alianza con Apple y Motorola para impulsar la creación de este microprocesador, surge la alianza AIM (Apple, IBM y Motorola) cuyo objetivo fue quitar el dominio que Microsoft e Intel tenían en sistemas basados en los 80386 y 80486.PowerPC (abreviada PPC o MPC) es el nombre original de la familia de procesadores de arquitectura de tipo RISC, que fue desarrollada por la alianza AIM. Los procesadores de esta familia son utilizados principalmente en computadores Macintosh de Apple Computer y su alto rendimiento se debe fuertemente a su arquitectura tipo RISC.

1993: El Intel Pentium

El microprocesador de Pentium poseía una arquitectura capaz de ejecutar dos operaciones a la vez, gracias a sus dos pipeline de datos de 32bits cada uno, uno equivalente al 486DX (u) y el otro equivalente a 486SX (u). Además, estaba dotado de un bus de datos de 64 bits, y permitía un acceso a memoria de 64 bits (aunque el procesador seguía manteniendo compatibilidad de 32 bits para las operaciones internas, y los registros también eran de 32 bits). Las versiones que incluían instrucciones MMX no sólo brindaban al usuario un más eficiente manejo de aplicaciones multimedia, como por ejemplo, la lectura de películas en DVD, sino que también se ofrecían en velocidades de hasta 233 MHz Se incluyó una versión de 200 MHz y la más básica trabajaba a alrededor de 166 MHz de frecuencia de reloj. El nombre Pentium, se mencionó en las historietas y en charlas de la televisión a diario, en realidad se volvió una palabra muy popular poco después de su introducción.

1994: EL PowerPC 620

En este año IBM y Motorola desarrollan el primer prototipo del procesador PowerPC de 64 bit, la implementación más avanzada de la arquitectura PowerPC, que estuvo disponible al año próximo. El 620 fue diseñado para su utilización en servidores, y especialmente optimizado para usarlo en configuraciones de cuatro y hasta ocho procesadores en servidores de aplicaciones de base de datos y vídeo. Este procesador incorpora siete millones de transistores y corre a 133 MHz Es ofrecido como un puente de migración para aquellos usuarios que quieren utilizar aplicaciones de 64 bits, sin tener que renunciar a ejecutar aplicaciones de 32 bits.

1995: EL Intel Pentium Pro

Lanzado al mercado para el otoño de 1995, el procesador Pentium Pro (profesional) se diseñó con una arquitectura de 32 bits. Se usó en servidores y los programas y aplicaciones para estaciones de trabajo (de redes) impulsaron rápidamente su integración en las computadoras. El rendimiento del código de 32 bits era excelente, pero el Pentium Pro a menudo era más lento que un Pentium cuando ejecutaba código o sistemas operativos de 16 bits. El procesador Pentium Pro estaba compuesto por alrededor de 5,5 millones de transistores.

1996: El AMD K5

Habiendo abandonado los clones, AMD fabricada con tecnologías análogas a Intel. AMD sacó al mercado su primer procesador propio, el K5, rival del Pentium. La arquitectura RISC86 del AMD K5 era más semejante a la arquitectura del Intel Pentium Pro que a la del Pentium. El K5 es internamente un procesador RISC con una Unidad x86- decodificadora, transforma todos los comandos x86 (de la aplicación en curso) en comandos RISC. Este principio se usa hasta hoy en todas las CPU x86. En la mayoría de los aspectos era superior el K5 al Pentium, incluso de inferior precio, sin embargo AMD tenía poca experiencia en el desarrollo de microprocesadores y los diferentes hitos de producción marcados se fueron superando con poco éxito, se retrasó 1 año de su salida al mercado, a razón de ello sus frecuencias de trabajo eran inferiores a las de la competencia, y por tanto, los fabricantes de PC dieron por sentado que era inferior.

1996: Los AMD K6 y AMD K6-2
Con el K6, AMD no sólo consiguió hacerle seriamente la competencia a los Pentium MMX de Intel, sino que además amargó lo que de otra forma hubiese sido un plácido dominio del mercado, ofreciendo un procesador casi a la altura del Pentium II pero por un precio muy inferior. En cálculos en coma flotante, el K6 también quedó por debajo del Pentium II, pero por encima del Pentium MMX y del Pro. El K6 contó con una gama que va desde los 166 hasta los más de 500 MHz y con el juego de instrucciones MMX, que ya se han convertido en estándares.

Más adelante se lanzó una mejora de los K6, los K6-2 de 250 nanómetros, para seguir compitiendo con los Pentium II, siendo éste último superior en tareas de coma flotante, pero inferior en tareas de uso general. Se introduce un juego de instrucciones SIMD denominado 3DNow!

1997: El Intel Pentium II

Un procesador de 7,5 millones de transistores, se busca entre los cambios fundamentales con respecto a su predecesor, mejorar el rendimiento en la ejecución de código de 16 bits, añadir el conjunto de instrucciones MMX y eliminar la memoria caché de segundo nivel del núcleo del procesador, colocándola en una tarjeta de circuito impreso junto a éste. Gracias al nuevo diseño de este procesador, los usuarios de PC pueden capturar, revisar y compartir fotografías digitales con amigos y familia vía Internet; revisar y agregar texto, música y otros; con una línea telefónica; el enviar vídeo a través de las líneas normales del teléfono mediante Internet se convierte en algo cotidiano.

1998: El Intel Pentium II Xeon

Los procesadores Pentium II Xeon se diseñan para cumplir con los requisitos de desempeño en computadoras de medio-rango, servidores más potentes y estaciones de trabajo (workstations). Consistente con la estrategia de Intel para diseñar productos de procesadores con el objetivo de llenar segmentos de los mercados específicos, el procesador Pentium II Xeon ofrece innovaciones técnicas diseñadas para las estaciones de trabajo y servidores que utilizan aplicaciones comerciales exigentes, como servicios de Internet, almacenamiento de datos corporativos, creaciones digitales y otros. Pueden configurarse sistemas basados en este procesador para integrar de cuatro o ocho procesadores trabajando en paralelo, también más allá de esa cantidad.

1999: El Intel Celeron

Continuando la estrategia, Intel, en el desarrollo de procesadores para los segmentos del mercado específicos, el procesador Celeron es el nombre que lleva la línea de de bajo costo de Intel. El objetivo fue poder, mediante ésta segunda marca, penetrar en los mercados impedidos a los Pentium, de mayor rendimiento y precio. Se diseña para el añadir valor al segmento del mercado de los PC. Proporcionó a los consumidores una gran actuación a un bajo coste, y entregó un desempeño destacado para usos como juegos y el software educativo.

1999: El AMD Athlon K7 (Classic y Thunderbird)


Procesador totalmente compatible con la arquitectura x86. Internamente el Athlon es un rediseño de su antecesor, pero se le mejoró substancialmente el sistema de coma flotante (ahora con 3 unidades de coma flotante que pueden trabajar simultáneamente) y se le incrementó la memoria caché de primer nivel (L1) a 128 KiB (64 KiB para datos y 64 KB para instrucciones). Además incluye 512 KiB de caché de segundo nivel (L2). El resultado fue el procesador x86 más potente del momento.

El procesador Athlon con núcleo Thunderbird apareció como la evolución del Athlon Classic. Al igual que su predecesor, también se basa en la arquitectura x86 y usa el bus EV6. El proceso de fabricación usado para todos estos microprocesadores es de 180 nanómetros. El Athlon Thunderbird consolidó a AMD como la segunda mayor compañía de fabricación de microprocesadores, ya que gracias a su excelente rendimiento (superando siempre al Pentium III y a los primeros Pentium IV de Intel a la misma frecuencia de reloj) y bajo precio, la hicieron muy popular tanto entre los entendidos como en los iniciados en la informática.

1999: El Intel Pentium III

El procesador Pentium III ofrece 70 nuevas instrucciones Internet Streaming, las extensiones de SIMD que refuerzan dramáticamente el desempeño con imágenes avanzadas, 3D, añadiendo una mejor calidad de audio, video y desempeño en aplicaciones de reconocimiento de voz. Fue diseñado para reforzar el área del desempeño en el Internet, les permite a los usuarios hacer cosas, tales como, navegar a través de páginas pesadas (con muchos gráficos), tiendas virtuales y transmitir archivos video de alta calidad. El procesador se integra con 9,5 millones de transistores, y se introdujo usando en él tecnología 250 nanómetros.

1999: El Intel Pentium III Xeon

El procesador Pentium III Xeon amplia las fortalezas de Intel en cuanto a las estaciones de trabajo (Workstation) y segmentos de mercado de servidores, y añade una actuación mejorada en las aplicaciones del comercio electrónico e informática comercial avanzada. Los procesadores incorporan mejoras que refuerzan el procesamiento multimedia, particularmente las aplicaciones de vídeo. La tecnología del procesador III Xeon acelera la transmisión de información a través del bus del sistema al procesador, mejorando el desempeño significativamente. Se diseña pensando principalmente en los sistemas con configuraciones de multiprocesador.

2000: EL Intel Pentium 4

Este es un microprocesador de séptima generación basado en la arquitectura x86 y fabricado por Intel. Es el primero con un diseño completamente nuevo desde el Pentium Pro. Se estrenó la arquitectura NetBurst, la cual no daba mejoras considerables respecto a la anterior P6. Intel sacrificó el rendimiento de cada ciclo para obtener a cambio mayor cantidad de ciclos por segundo y una mejora en las instrucciones SSE.

2001: El AMD Athlon XP

Cuando Intel sacó el Pentium 4 a 1,7 GHz en abril de 2001 se vio que el Athlon Thunderbird no estaba a su nivel. Además no era práctico para el overclocking, entonces para seguir estando a la cabeza en cuanto a rendimiento de los procesadores x86, AMD tuvo que diseñar un nuevo núcleo, y sacó el Athlon XP. Este compatibilizaba las instrucciones SSE y las 3DNow! Entre las mejoras respecto al Thunderbird se puede mencionar la pre recuperación de datos por hardware, conocida en inglés como prefecta, y el aumento de las entradas TLB, de 24 a 32.
2004: El Intel Pentium 4 (Prescott)
A principios de febrero de 2004, Intel introdujo una nueva versión de Pentium 4 denominada 'Prescott'. Primero se utilizó en su manufactura un proceso de fabricación de 90 nm y luego se cambió a 65nm. Su diferencia con los anteriores es que éstos poseen 1 Mb o 2 Mb de caché L2 y 16 KiB de caché L1 (el doble que los Northwood), prevención de ejecución, SpeedStep, C1E State, un HyperThreading mejorado, instrucciones SSE3, manejo de instrucciones AMD64, de 64 bits creadas por AMD, pero denominadas EM64T por Intel, sin embargo por graves problemas de temperatura y consumo, resultaron un fracaso frente a los Athlon 64.

2004: El AMD Athlon 64

El AMD Athlon 64 es un microprocesador x86 de octava generación que implementa el conjunto de instrucciones AMD64, que fueron introducidas con el procesador Opteron. El Athlon 64 presenta un controlador de memoria en el propio circuito integrado del microprocesador y otras mejoras de arquitectura que le dan un mejor rendimiento que los anteriores Athlon y que el Athlon XP funcionando a la misma velocidad, incluso ejecutando código heredado de 32 bits. El Athlon 64 también presenta una tecnología de reducción de la velocidad del procesador llamada Cool'n'Quiet, cuando el usuario está ejecutando aplicaciones que requieren poco uso del procesador, baja la velocidad del mismo y su tensión se reduce.

2006: EL Intel Core Duo

Intel lanzó ésta gama de procesadores de doble núcleo y CPUs 2x2 MCM (módulo Multi-Chip) de cuatro núcleos con el conjunto de instrucciones x86-64, basado en el la nueva arquitectura Core de Intel. La microarquitectura Core regresó a velocidades de CPU bajas y mejoró el uso del procesador de ambos ciclos de velocidad y energía comparados con anteriores NetBurst de los CPU Pentium 4/D2. La microarquitectura Core provee etapas de decodificación, unidades de ejecución, caché y buses más eficientes, reduciendo el consumo de energía de CPU Core 2, mientras se incrementa la capacidad de procesamiento. Los CPU de Intel han variado muy bruscamente en consumo de energía de acuerdo a velocidad de procesador, arquitectura y procesos de semiconductor, mostrado en las tablas de disipación de energía del CPU. Esta gama de procesadores fueron fabricados de 65 a 45 nanómetros.

2007: El AMD Phenom

Phenom fue el nombre dado por Advanced Micro Devices (AMD) a la primera generación de procesadores de tres y cuatro núcleos basados en la microarquitectura K10. Como característica común todos los Phenom tienen tecnología de 65 nanómetros lograda a través de tecnología de fabricación Silicon on insulator (SOI). No obstante, Intel, ya se encontraba fabricando mediante la más avanzada tecnología de proceso de 45 nm en 2008. Los procesadores Phenom están diseñados para facilitar el uso inteligente de energía y recursos del sistema, listos para la virtualización, generando un óptimo rendimiento por vatio. Todas las CPU Phenom poseen características tales como controlador de memoria DDR2 integrado, tecnología HyperTransport y unidades de coma flotante de 128 bits, para incrementar la velocidad y el rendimiento de los cálculos de coma flotante. La arquitectura Direct Connect asegura que los cuatro núcleos tengan un óptimo acceso al controlador integrado de memoria, logrando un ancho de banda de 16 Gb/s para intercomunicación de los núcleos del microprocesador y la tecnología HyperTransport, de manera que las escalas de rendimiento mejoren con el número de núcleos. Tiene caché L3 compartida para un acceso más rápido a los datos (y así no depende tanto del tiempo de latencia de la RAM), además de compatibilidad de infraestructura de los zócalos AM2, AM2+ y AM3 para permitir un camino de actualización sin sobresaltos. A pesar de todo, no llegaron a igualar el rendimiento de la serie Core 2 Duo.

2008: El Intel Core Nehalem

Intel Core i7 es una familia de procesadores de cuatro núcleos de la arquitectura Intel x86-64. Los Core i7 son los primeros procesadores que usan la microarquitectura Nehalem de Intel y es el sucesor de la familia Intel Core 2. FSB es reemplazado por la interfaz QuickPath en i7 e i5 (zócalo 1366), y sustituido a su vez en i7, i5 e i3 (zócalo 1156) por el DMI eliminado el northBrige e implementando puertos PCI Express directamente. Memoria de tres canales (ancho de datos de 192 bits): cada canal puede soportar una o dos memorias DIMM DDR3. Las placa base compatibles con Core i7 tienen cuatro (3+1) o seis ranuras DIMM en lugar de dos o cuatro, y las DIMMs deben ser instaladas en grupos de tres, no dos. El Hyperthreading fue reimplementado creando nucleos lógicos. Está fabricado a arquitecturas de 45 nm y 32 nm y posee 731 millones de transistores su versión más potente. Se volvió a usar frecuencias altas, aunque a contrapartida los consumos se dispararon.

2008: Los AMD Phenom II y Athlon II

Phenom II es el nombre dado por AMD a una familia de microprocesadores o CPUs multinúcleo (multicore) fabricados en 45 nm, la cual sucede al Phenom original y dieron soporte a DDR3. Una de las ventajas del paso de los 65 nm a los 45 nm, es que permitió aumentar la cantidad de cache L3. De hecho, ésta se incrementó de una manera generosa, pasando de los 2 Mb del Phenom original a 6 Mb.

2010: Familia Intel Core 2010

Intel Corporation lanza su nueva familia de procesadores Intel Core 2010, que ofrecen mayor integración y desempeño inteligente. Están dirigidos al mercado de consumo en general ofreciendo la "Intel Turbo Boost Technology", que permite la adaptación a las necesidades de desempeño del usuario.

La llegada de los nuevos chips Intel Core i7, i5 e i3 coincide con la del innovador proceso de fabricación de 32 nanómetros (nm) de Intel.

Los procesadores Intel Core 2010 se fabrican por medio del proceso de 32nm de la misma empresa, que incluye la segunda generación de transistores high-k metal gate. Esta técnica, junto con otros avances, ayuda a incrementar la velocidad de la computadora con disminución del consumo de energía.

2010: Nueva Familia de AMD Phenom II y Athlon II

AMD lanza cuatro nuevas CPUs que son versiones mejoradas de las anteriores.
El nuevo AMD Phenom II X2 BE 555 de doble núcleo surge como el más rápido Dual-Core del mercado. También se lanzan tres nuevos Athlon II con solo Cache L2, pero con buena relación costo/rendimiento. El AMD Athlon II X4 630 corre a 2,8 GHz. El AMD Athlon II X4 635 continua la misma línea.

AMD también lanza un nuevo triple núcleo, llamado Athlon II X3 440, así como un doble núcleo Athlon II X2 255. También sale el Phenom X4 995, de cuatro núcleos, que corre a más de 3,2GHz.

Además de las nuevas CPUs, la compañía también pone en marcha nuevos chipsets de la serie 800 con una nueva IGP más rápida.

2011: EL Intel Core Sandy Bridge

Llegarán para remplazar los chips Nehalem, con Intel Core i3, Intel Core i5 e Intel Core i7 serie 2000 y Pentium G.

Intel lanzará sus nuevos procesadores que se conocen con el nombre clave Sandy Bridge. Estos procesadores Intel Core que no tienen sustanciales cambios en arquitectura pero si los necesarios para hacerlos más eficientes y rápidos que los modelos anteriores. Es la segunda generación de los Intel Core con nuevas instrucciones de 256 bits, duplicando el rendimiento, mejorando el desempeño en 3D y todo lo que se relacione con operación en multimedia. Se esperan para Enero del 2011. Incluye nuevo conjunto de instrucciones denominado AVX y una GPU integrada de hasta 12 unidades de ejecución

Ivy Bridge es la mejora de sandy bridge, se estima para 2012 y promete una mejora de la GPU, así como procesadores de sexdécuple núcleo en gamás más altas y cuádruple núcleo en la más básica, eliminando así los procesadores de núcleo doble.

2011: El AMD Fusion

AMD Fusion es el nombre clave para un diseño futuro de microprocesadores Turión, producto de la fusión entre AMD y ATI, combinando con la ejecución general del procesador, el proceso de la geometría 3D y otras funciones de GPU actuales. La GPU (procesador gráfico) estará integrada en el propio microprocesador. Esta tecnología se espera hacia principios de 2011; como sucesor de la más reciente microarquitectura.

Tipos de Encapsulados


Dado que los chips de silicio son muy delicados, incluso una pequeña partícula de polvo o de gota de agua puede afectar su funcionamiento. La luz también pueden causar mal funcionamiento. Para combatir estos problemas, los chips se encuentran protegidos por una carcaza o encapsulado.

El encapsulado cumple las siguientes funciones:

Excluir las influencias ambientales: La humedad y el polvo en el aire son causas directas de defectos en los disositivos semiconductores, además de las vibraciones y los golpes. La iluminación y los imanes también pueden causar mal funcionamiento. El encapsulado evita estas influencias externas, y protege el chip de silicio.

Permitir la conectividad eléctrica: Si los chips de silicio fueran simplemente encerrados dentro de un encapsulado no podrian intercambiar señales con el exterior. Los encpasulados permiten la fijacion de conductores metalicos denominados pines o esferas de soldadura (BGA) permitiendo que las señales sean enviadas a y desde el dispositivo semiconductor.

Disipar el calor: Los chips de silicio se calientan durante el funcionamiento. Si la temperatura del chip se eleva hasta valores demasiados alto, el chip funcionara mal, se desgastara o se destruira dependiendo del valor de temperatura alcanzado. Los encapsulados pueden efectivamente liberar el calor generado.

Mejorar el manejo y montaje: Debido a que los circuitos incorporados en chips de silicio y los chips de silicio en sí son tan pequeños y delicados, no pueden ser fácilmente manipulados, y realizar un montaje en esa pequeña escala sería difícil. Colocar el chip en una cápsula hace que sea más fácil manejar y de montar en placas de circuitos impresos.

Existen 2 clasificaciones generales para lo encapsulados, segun contengan circuitos integrados o componentes discretos, encapsulados IC y encapsulados discretos respectivamente.

Tipos de Encapsulados


DIP: Los pines se extienden a lo largo del encapsulado (en ambos lados) y tiene como todos los demas una muesca que indica el pin número 1. Este encapsulado básico fue el más utilizado hace unos años y sigue siendo el preferido a la hora de armar plaquetas por partes de los amantes de la electronica casera debido a su tamaño lo que facilita la soldadura. Hoy en día, el uso de este encapsulado (industrialmente) se limita a UVEPROM y                    sensores.
SIP: Los pines se extienden a lo largo de un solo lado del encapsulado y se lo monta verticalmente en la plaqueta. La conseguiente reducción en la zona de montaje permite un densidad de montaje mayor a la que se obtiene con el DIP.




PGA: Los multiples pines de conexión se situan en la parte inferior del encapsulado. Este tipo se utiliza para CPUs de PC y era la principal opción a la hora de considerar la eficiencia pin-capsula-espacio antes de la introducción de BGA. Los PGAs se fabricaron de plastico y ceramica, sin embargo actualmente el plastico es el mas utilizado, mientras que los PGAs de cerámica se utilizan para un pequeño número de aplicaciones.
SOP: Los pines se diponen en los 2 tramos más largos y se extienden en una forma denominada “gull wing formation”, este es el principal tipo de montaje superficial y es ampliamente utilizado mespecialmente en los ámbitos de la microinformática, memorias y IC análogicos que utilizan un número relativamente pequeño de pines.


TSOP: Simplemente una versión más delgada del encapsulado SOP.

QFP: Es la versión mejorada del encapsulado SOP, donde los pines de conexión se extienden a lo largo de los cuatro bordes. Este es en la actualidad el encapsulado de montaje supeficial más popular, debido que permite un mayor número de pines.

SOJ: Las puntas de los pines se extieden desde los dos bordes más largos dejando en la mitad una separación como si se tratase de 2 encapsulados en uno. Recibe éste nombre porque los pines se parecen a la letra “J” cuando se lo mira desde el costado. Fueron utilizados en los módulos de memoria SIMM.

QFJ: Al igual que el encapsulado QFP, los pines se extienden desde los 4 bordes bordes.

QFN: Es similar al QFP, pero con los pines situados en los cuatro bordes de la parte inferior del encapsulado. Este encapsulado puede hacerse en modelos de poca o alta densidad.

TCP: El chip de silicio se encapsulan en forma de cintas de películas, se puede producir de distintos tamaños, el encapsualdo puede ser doblado. Se utilizan principalmente para los drivers de los LCD.

BGA: Los terminales externos, en realidad esferas de soldadura, se situan en formato de tabla en la parte inferior del encapsulado. Este encapsulado puede obtener una alta densidad de pines, comparado con otros encapsulados como el QFP, el BGA presenta la menor probabilidad de montaje defectuosos en las plaquetas.

LGA: Es un encapsulado con electrodos alineados en forma de array en su parte inferior. Es adecuado para las operaciones donde se necesita alta velocidad debido a su baja inductancia. Además, en contraste con el BGA, no tiene esferas de soldadura por lo cual la altura de montaje puede ser reducida.








Otros encapsulados


INSTALACION DEL MICROPROCESADOR
Uno de los componentes más complicados y delicados de instalar es el microprocesador, el mismo conlleva una serie de pasos a seguir muy específicos. La paciencia es un factor decisivo en esta tarea ya que necesitaremos armarnos de paciencia para que las cosas salgan bien.
Tenemos 2 caminos para instalar el microprocesador, los 2 no son muy diferentes uno del otro, si no que lainstalación de su disipación en si es diferente. Los dos caminos son Intel y AMD, pioneros en microprocesadores de escritorio.

Suponemos que  ya tenemos el motherboard correspondiente igual que las memorias ya que si nuestro motherboard es incompatible con el modelo de nuestro Procesador, nunca podremos hacerlo funcionar ni instalar.

Herramientas y artefactos necesarios:
·         Necesitaremos un destornillador de punta plana
·         Un pañuelo
·         Destornillador de cuatro puntas (Tipo Phillips)
·         Pasta térmica para la disipación del microprocesador

Todo procesador posee su disipador, podremos instalar otro disipador que tenga mayor rendimiento pero por el momento solo haremos esta guía para instalar el microprocesador con su respectivo disipador de fábrica.

Pasos a seguir para instalar un microprocesador:
·         Primero tendremos que insertar el microprocesador en el motherboard, para ello verificaremos la posición de las patitas de nuestro chip y el slot del motherboard para que el mismo encaje de forma suave y perfecta (En el manual de la placa base o del microprocesador suele incluirse una imagen que indica como colocarlo). De ninguna manera forzar el microprocesador ya que si se doblan algunas de sus patitas (conectores) este no funcionara jamás.

  • Colocar un poco de pasta térmica en el procesador (no tiene que cubrir todo el procesador) solo un poco es suficiente. Para darse una idea, una pequeña película del espesor de una hoja de cartulina es suficiente.
  • Apoyar el disipador arriba del microchip y enganchar los soportes en el mother
  • Atornillar y sujetar de forma firme el Disipador

La única diferencia entre AMD e Intel es la forma de su disipador, una es redonda y otra es cuadrada es por eso que la instalación del microprocesador es diferente, solo tendremos que 
sujetar de forma diferente el disipador de cada uno.